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“So the first rule of my game is: think of the biggest possible artificial activities with 

limits set only by the laws of physics and look for those.” 

— Freeman Dyson [1] 

Abstract: 
Observational SETI has concentrated on using electromagnetism as the carrier , namely 

radio waves and laser radiation.  Michael Hippke [2] has pointed out that it may be 

possible to use neutrinos or gravitational waves as signals. Gravitational waves demand 

the command of the generation of very large scale amounts of energy, Jackson and 

Benford [3]. This paper describes a beacon that uses beamed neutrinos as the signal. 

Neutrinos, like gravitational waves, have the advantage of extremely low extinction in 

the interstellar medium. To make use of neutrinos an advanced civilization can use a 

gravitational lens as a focus and amplifier. The lens can be a neutron star or a black 

hole.  Using wave optics one can calculate the advantage of gravitational lensing for 

amplification of a beam and along the optical axis it is exceptionally large. Even though 

the amplification is very large the dimeter of the beam is quite small, less that a 

centimeter. This implies that a large constellation of neutrino transmitters would have 

to enclose the local neutron star or black hole to cover the sky. This means that such a 

beacon would have to be built by a Kardashev Type II civilization. 

 

 

1. Introduction 

  The Search for Extra-Terrestrial Intelligence has been going on now for over 50 

years. These searches have focused on using photons in the infra-red, microwave and 

radio-frequencies. These ideas spawned concepts that advanced civilizations might build 

beacons. Recently thoughts about the spectrum of long range carriers have been 

extended to neutrinos and gravitational waves, Hippke, 2018.    
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Carrier Rest 
Mass 
Mev/c2 

    Speed 

Lifetime Extinction Sources 

Photons 0 

v = 1 

Stable .001 Beacons 
Deliberate Transmissions 
Propulsion Stations 
Ambient Radiation from Star 
Ships 
Waste Heat Star Ships 
Waste Heat (“Dyson Spheres” ) 
A large “Instrumentality” 
 

neutrinos ~.001 

v~1 

Oscillations 

Stable 

~0 

 

From Star Ships 
A Beacon 
Deliberate Beaming for 
Communication 
 

Gravitons 

Gravitational 

Waves 

0 

v=1 

Stable 

 

~0 A very advanced civilization’s 
beacon 

 

 

Table 1   Long range zero and near zero rest mass messengers (after Hippke[2]) 

Gravitational waves as signal beacon has been presented by Jackson and Benford[3]. 

Over cosmic distances directed gravitational waves are very expensive in energy, 

demanding a command of levels of energies above Kardashev III civilizations [4].   

Pasachoff and Kutner[5], Learned, et al.[6] and Pakvasa [7] have presented ideas about 

using neutrinos for interstellar communication. Herein is presented a method for using 

a gravitational lens to amplify the effectiveness of a neutrino beam transmitted across 

interstellar distances. 

2. Gravitational Lensing   
 Gravitational lensing has been proposed as a means of enhanced interstellar 
communication, see, Eshleman (1979)[8],  or Maccone for an extensive treatment [9]. 
Consider a K2 civilization using a Schwarzschild or Kerr black hole as a means of 
focusing radiation from a beaming station.  The advantage of this is the enormous 
amount of amplification possible. Any gravitating body may serve as a lens, an ordinary 
star, a neutron star or a black hole [10].  Note, under consideration here is using a 
gravitational lens as a transmitter not as a telescope. 
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 It is known that focusing of light by a gravitating point mass leads to caustic focal 
structures and that a geometrical optics treatment gives an infinite gain of the focused 
radiation on the optical axis [11]. The optical axis is the line connecting the source, lens 
and observer; we are interested in the case where the source is behind the lens and there 
is an observer at the caustic crossing. In a wave optics treatment the gain on the caustic 
is not infinite but very large as was shown by Bliokh and Minakov (1975) [12]. We want 
to emphasize the observable amplification at the caustic crossing, thus some elaboration 
of the calculation is in order , below is a sketch of the derivation.  
  Gain is defined as the ratio of the scattered flux per unit solid angle (at a large 
distance from the scattering center) to incident radiation flux. The proper calculation of 
the gain on the optical axis must take diffraction into account. This can be done in two 
ways solving the wave equation as a scattering problem for the scalar case with the 
proper boundary conditions [13] or using the Fresnel–Kirchhoff phase integral [11]. 
Take the case of solving the wave equation. The space-time of a black hole to be 
described by the Schwarzschild metric [11],   
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where r, θ and φ are spherical coordinates and t is the coordinate time, with M the mass 
of the black hole if G and c are gravitational constant and c the speed of light then 
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is the Schwarzschild radius. 
 Write the propagation of a plane wave on the Schwarzschild and use the Fourier 
decomposition for the angular parts [11] 
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 where Ym
n are the spherical harmonics and Ψ solves the radial wave equation of a scalar 

field 
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that is, the wave equation of scalar radiation of frequency ω and wave function Ψ. 
If (4) is subject to boundary conditions that define the incoming and scattered wave 
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Then the solution, in cylindrical coordinates, is [12, 13, 14, 15, 16, 17, and 18]: 
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 Where 1 1F is a confluent hypergeometric function and r, θ and z are cylindrical 

coordinates.    
In the high frequency limit ω→∞ and first order gravitational field, the wave function 
(2) and the incoming intensity I0 define the gain [18], 
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And Ψ in this limit (6), close to the focal line in the image plane leads to [18] 
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 where J0 is the first order Bessel function. The first term is the scaling, proportional to 
the Schwarzschild radius divided by the wavelength. The Bessel function term is 
oscillating and due to interference averages to ½.  The second term also defines the 
spatial extent to a ‘focal beam’ (a caustic on the focal line this term is sometimes called 
the Point Spread Function, PSA. A very exhaustive treatment of this lensing problem for 
the wave optics electromagnetic case is given by Turyshev and Toth 2017, [18].  
       In this wave optics solution it was noted that there are three regions a shadow, a 
region of geometric optics and on the focal line a beam of large intensity due to 
diffraction, Figure 1 . From (4) plots can be made of the PSA as a function of ρ and z. 
There is a prime focal point at z0 = Rn

2/2rs , and z down the axis can be written as  
 

z(b) = z0(b2/Rn
2) (9) 

 
where b is the impact parameter of a neutrino ray and Rn is the neutron star radius. 
 Fix z at z0 then in the image plane perpendicular to this point in normalized units the 
spread is given in figure 1 
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Figure1. The normalized point spread, PSF, for a gravitational lens. 
 
If ρ is fixed and z allowed to increase down the focal axis the PSF becomes asymptotic in 
a few multiples of the prime focal point.  
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Figure 2. The PSF as a function of distance down the focal axis for a fixed ρ.  
 

This implies that the central peak in figure 1 broadens and most of the flux falls in a 
region defined by the zeros of the Bessel function. 
For a stellar mass gravitational lens and 1 Gev neutrinos, the wavelength is about 
 10-14 cm, the gain is approximately 1020 ! The characteristic radius of main region of 
concertation is about one micron; however there is an effective flux out to about one 
centimeter.  This beam intensity extends to infinity only diminished by absorption in the 
interstellar medium, encounters with a massive object like a planet or star and a very 
small beam divergence. 
The usual treatment above diffraction model is for a telescope, of interest here is a 
transmitter, that is forward scattering is used to propagate a beam of high 
concentration.  
 
3.0 Transmission and Detection 
 
 How might an advanced civilization configure an artifact to exploit the model 
described in section 2? The gravitation lens could be a neutron star (a neutron star is 
very spherical)  or a black hole (it could be an ordinary star however other condensed 
stellar objects are not considered here). Consider a neutron star with a neutrino beam 
transmitting station in orbit about it. At present a typical high-energy neutrino beam is 
made from the decay of π mesons. Large accelerators boost, usually protons, to 
relativistic energies which strike a target that produces pions and kaons which decay in 
flight into neutrinos, electrons and muons. The useful feature is that the pions and 
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kaons can be focused and a directed beam of neutrinos produced. These neutrinos will 
emerge from the source into beam angle θ determined by Special Relativity, that is  
 

1



 . (9) 

 
 

Where γ is the Lorentz factor 
1

√1−𝛽2
 (β=speed as a fraction of light speed).  Taking the 

gravitational lens to be a neutron star or a non-rotating stellar mass black hole a 
transmitter is envisioned (a rotating black hole ,a Kerr black hole, could be used but the 
modeling is more complicated and is not considered here). Place a neutrino beam 
transmitter at 1000 neutron star radii or at about 1000 km and using an impact 
parameter of 25 radii the opening angle (by simple geometery) will be approximately  1 
degree, this gives a Lorentz factor of 74 which results in a pion bunch with energy 8 Gev. 
Thus there is a beam of approximately 8 Gev neutrinos incident on an annulus with a 
width of 10 km. Suppose the energy input is one watt for one second, then 8x1014 
neutrinos flow into an area of about 8x1011 m2   which in turn is focused into an area of 
approximately 1 cm2 resulting in a bolt of Gev neutrinos. A 1.4 solar mass neutron star 
has a Schwarzschild radius of about 3 kilometers and 8 Gev neutrinos have a wavelength 
of about 10-14 cm (10-4 picometres)  thus the gain (or amplification) from the 
gravitational lens is about 1021 on the focal axis. On the focal axis in the center of the 
‘bolt’ is a one cm spot with approximately 1020 neutrinos per pulse.  
 Define the resolution of the neutron star beacon by the location of the first null of 
the Bessel function argument in (8) or the first zero in figure 1, then the ‘spot’ in the 
image plane is associated  with the angle θs = ρ/z , where ρ is the ‘radius’ of a spot at a 
transmitter distance of z. To emphasize take as the region of interest the distance to the 
first null of the Bessel function, equation (8), 
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The first null is rn = 2.40483, then (10) can be solved for θs [17], 
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The radius of the spot at the detection distance is ρ = θszt , where zt is the distance from 
transmitter to the target. Here is a problem similar to the ‘resolution’ of an image by a 
gravitational lens except the detector is a neutrino telescope. 
The dependence in (8) is only on two parameters, wavelength and impact parameter. 
With the transmitter at 1000 neutron star radii and the maximum impact parameter set 
at 25 neutron star radii the resulting neutrino energy ,(9), means a wavelength of 10-14 
cm, resulting in a very small angle, θs = 2.4x10-22 radians.  
As an example take the characteristic distance of an advanced civilization in our galaxy 
to be 10,000 light years then ρ is approximately 2 centimeters!  
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 If the transmitter pulses at a rate of one second then ‘bolt’ of neutrinos moves off 
to infinity at almost the speed of light and only attenuated when it strikes a mass. 
Suppose it encounters a neutrino ‘detector’, estimate the number of scattering events in 
a cylinder of water 1 meter long and 1 meter in diameter, the number of events is  

 

in w av
events

N N
N

A

 
  (12) 

Where σ is the interaction cross section for 8 Gev neutrinos , which is approximately 10-

42 m2 (10-38cm2) [19] , Nin is the number of neutrinos passing in per unit time, ρw is the 
density of water, Nav is Avogadro’s number and A is the atomic number of water. Even 
tho the cross section is extremely small approximately an average of 2 events are seen 
per second in cylinder about 1 millimeter in diameter, figure 3.   

 

 
 

Figure 3. Neutrino events in a candidate neutrino water detector. 
  

The configuration here is extremely idealized and there are a number of parameters 

subject to errors, but this is a lot of detections. IceCube [20] detects about 11 neutrinos a 

day.  

4.0 The Beacon 
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 An extreme problem presents itself; a one centimeter beam aimed over 

10,000 light has an almost zero probability of intersecting a detector on the Earth.  A 

simple estimate of the probably of a detection is θs/4π , in this case approximately 10-21 . 

One could extrapolate that a Kardashev 2 (K2)  civilization can construct the pointing 

accuracy  an ultra-advance mechanism to aim an almost infinitively sharp beam at a 

target over thousands of light years with accuracy , but that will be left as a thought. 

  One can make another extrapolation, if the number of transmitters is 

increased to make the transmitter more isotropic-like it could make detection easier. 

Suppose that a K2 type civilization capable of interstellar flight can reach a neutron star 

it should have the technological capability to build a beacon consisting of an array of 

transmitters in a constellation of orbits about the neutron star. Let this constellation 

consist of 1018 ‘neutrino’ transmitters 1 meter in characteristic size ‘covering’ the area of 

a sphere 1000 km in radius with 1018  particle accelerators in orbit figure 5.  At the 

present time there is the development of plasma Wakefield particle accelerators that are 

meters in size [21, 22]. It is probable that a K2 civilization may construct Wakefield 

electron accelerators of very small size.   

       We will also suppose that a K2 civilization can solve all the problems of pointing 

errors and jitter, which could be substantial, the engineering physics orders of 

magnitude beyond any our current civilization is capable of. Also the engineering 

physics involved in guidance, navigation and control of a constellation of 1018 small 

space craft. 

To summarize, the engineering physics approach would be to build a constellation of 

neutrino beam transmitters.  Place, in orbit, at 1000 neutron star radii, 1018 advanced 

small Wakefield accelerators one meter long and 20 centimeters in diameter , figure 5. 

Each ‘accclerator point on figure 5 is occupied by an accelerator neutrino source, figure 

6.   Plasma-based accelerators are already producing high energy particle beams, what a 

K2 civilization may be capable of , for accelerators,  is an extrapolation. With 1018 

accelerators pointing four pi radians the probability of detection increases to 

approximately 10-3 and the detection rate at 10,000 light years becomes approximately 5 

per minute. The power required for the whole artifact’ is about .01 Solar, which is a K2 

command of energy.  
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Figure 5: A representational 

  constellation of 1018 accelerator-transmitters in orbit(nothing to scale). 
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Figure 6: A schematic illustration of a possible neutrino accelerator-transmitter, the 

accelerator and lens (nothing to scale). 

Of note, there is one constraint the advanced civilization must master. The transmitters 

in the orbital constellation must be configured as to appear to the gravitational lens as 

point-sources to the gravitational lens. It will be supposed that a K2 technology can 

master this technology. 

 It is also possible for the gravitational lens to be a black hole, however the 

results are nearly same except for ‘glory’ scattering, radiation scattered ‘backward’, 

which may be of advantage [23]. Scattering by a rotating black hole is very complicated 

matter and is not dealt with here.  

 

5.0 Conclusions 

An instrumentality has been presented here for directed neutrino signal transmission. 

The ‘beam’ could encode information in neutrino beam by on-off keying, or more 

sophisticated modulation is possible [24]. An advanced civilization may deploy such a 

beacon as a ‘honey-pot’ attracting attention to an electromagnetic transmitter 

broadcasting more sophisticated information. The ‘artifact’ presented here is 
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demonstration; a Kardashev 2 civilization would likely have the resources to finesse the 

technology in a smarter way. The remarkable element is that a neutrino source can be 

fabricated producing extraordinary number of detection events at cosmic distances. The 

signal to noise ratio at Mev may not even be a problem if the detection rate is high.  

There may be waste heat from the operation of this technology , even if in the infrared it 

will look a bit odd. 

Acknowledgement: Illustrations by Douglas Potter. 
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